
SDN Hands-On
Corso di Tecnologie di Infrastrutture di Reti

Martin Klapez

Department of Engineering Enzo Ferrari
University of Modena and Reggio Emilia

Martin Klapez (UNIMORE) SDN Hands-On 1 / 14



Overview

Slides at: netlab.unimore.it/wp-content/uploads/2024/05/sdn.pdf

⋆ Software-Defined Networking (SDN) in a nutshell

⋆ Hub vs L2 Learning Switch

⋆ Assignment: a custom SDN controller

⋆ Assignment: NFV

Martin Klapez (UNIMORE) SDN Hands-On 2 / 14



Become familiar with basic OpenFlow concepts

SDN in a nutshell:

⋆ Traditionally , network hardware did both the decision-making and the
actual work.

⋆ It was not programmable or, if it was, you had to tinker with
vendor-specific APIs, directly on the hardware itself.

⋆ So, for instance, a switch had to calculate where to forward incoming
packets, and then had to actually send them. Direction & Execution.

Martin Klapez (UNIMORE) SDN Hands-On 3 / 14



Become familiar with basic OpenFlow concepts

SDN in a nutshell:

⋆ Someone got tired by this lack of flexibility and saw the potential of
applying software abstractions to networking, starting the trends of
SDN and Network Function Virtualization (NFV).

⋆ SDN: “Now” (not really, the majority of the deployed network
hardware still operates in the old way), decision-making is performed
by software, wrote with modern programming languages, that run on
general-purpose hardware (Control Plane), and execution is carried on
by ‘dumb’ but fast specialized hardware that just follow the rules sent
to them (Data Plane).

⋆ NFV: functions that were performed by specialized hardware, e.g., a
firewall, can be now performed through software, and they can be
chained through APIs.

Martin Klapez (UNIMORE) SDN Hands-On 4 / 14



Become familiar with basic OpenFlow concepts

L1 Hub.

A L1 Hub has the job of forwarding a packet to the destination.

It works this way:
⋆ It receives a packet from a port x .
⋆ It floods the packet on all the other ports.

The intended destination will eventually receive the packet. Inefficient but
simple.

Martin Klapez (UNIMORE) SDN Hands-On 5 / 14



Become familiar with basic OpenFlow concepts

L2 Learning Switch.

Same job, but it works this way:
⋆ It has a table to keep track of [mac& : port] associations.
⋆ It receives a packet from a port x .
⋆ It puts in the table [mac& : port].
⋆ It looks in the headers of the packet for the destination mac&.
⋆ If it finds the destination mac& in the table, it forwards the packet to

the corresponding port.
⋆ Otherwise, it floods the packet as a hub, but as soon as it receives a

packet from the destination mac& (a TCP ACK for instance), it
tracks its port in the table.

Martin Klapez (UNIMORE) SDN Hands-On 6 / 14



Become familiar with basic OpenFlow concepts

Remove the POX folder if it exists already and clone the POX repo

> sudo rm -r pox
> git clone https://github.com/noxrepo/pox.git
> cd pox
> git checkout 7030909

(if you get a permission issue) > export GIT_SSL_NO_VERIFY=1

To start the POX Hub module:

> ./pox.py forwarding.hub &

To start the default POX L2 Learning Switch module:

> ./pox.py forwarding.l2_learning &

(you can add “--unthreaded-sh” after ./pox.py if it doesn’t work)

Martin Klapez (UNIMORE) SDN Hands-On 7 / 14



Become familiar with basic OpenFlow concepts

To start Mininet and attach to the POX controller:

(2 hosts) > sudo mn --controller remote
(25 hosts) > sudo mn --controller remote --topo tree,depth=2,fanout=5

To check the attainable data rates:
start an iPerf server on h2, in background

mininet > h2 iperf -s &

and start an iPerf client on h1

mininet > h1 iperf -c h2

Now, let’s check the performance.

Martin Klapez (UNIMORE) SDN Hands-On 8 / 14



Become familiar with basic OpenFlow concepts

By default, nodes and links in Mininet are supposed not to be constrained,
so, “infinite” bandwidth and “infinitesimal” latency.

This and the commands above mean that the data rate you see:
⋆ Is bounded by how fast your system can do things, let’s simplify by

saying CPU-bounded. A faster CPU will give you faster transfers.
⋆ Is measured on the client. Don’t ever do this. Measure it on the server

to get the actual goodput, especially with iPerf, or you’ll also include
retransmissions in your figure. However, it’s ok for our purpose here.

Martin Klapez (UNIMORE) SDN Hands-On 9 / 14



Become familiar with basic OpenFlow concepts

behind the scenes

When a switch receives a packet that doesn’t satisfy any of the rules in its
forwarding table, it sends that packet to the controller with a specific
OpenFlow command → “S: What should I do with this?”

Then, the controller decides what the switch should do with that packet
and instructs the switch to do so. This usually happens through an
OpenFlow command that instructs the switch to remember the rule
→ “C: From now on, do x with that and similar packets”

Martin Klapez (UNIMORE) SDN Hands-On 10 / 14



Become familiar with basic OpenFlow concepts

This is the default behavior, and it is so for performance reasons.

If a switch already has a rule specifying what to do with an inbound
packet, it simply forwards it.

When compared with the direct forwarding, the ping-pong between switch
and controller needs ∼ an order of magnitude more time.

Martin Klapez (UNIMORE) SDN Hands-On 11 / 14



Assignment: a custom SDN controller

The default POX L2 Learning Switch controller module installs rules on the
switch. Your job is to modify it so that:

1 The controller installs no rule
2 Each packet that reaches the switch is sent to the controller
3 The controller, literally each time, explicitly tells the switch in which

port to forward the packet to.

Relevant documentation:
https://noxrepo.github.io/pox-doc/html/#openflow-messages

To shutdown the POX controller currently in execution: (outside Mininet)

> sudo pkill python

Martin Klapez (UNIMORE) SDN Hands-On 12 / 14



Assignment: a custom SDN controller

hints

⋆ You need to know the existence of 3 OpenFlow messages and what
they do: Packet-In, Flow-Mod, and Packet-Out

⋆ You can do all the three points above in one shot

⋆ It’s enough to modify 1 (yes, ONE) line of code
(but be careful, you might find two lines with flow_mod...)

Martin Klapez (UNIMORE) SDN Hands-On 13 / 14



Assignment: NFV

With this topology:

> sudo mn --controller remote --topo tree,depth=2,fanout=5

your job is to build a Software-Defined firewall with POX, by modifying or
creating form scratch a POX module. The firewall should:

1 mutually block traffic between h1 and h2

2 mutually block traffic from h1 and h25

3 block traffic from h6 to h1 but not the other way around

Martin Klapez (UNIMORE) SDN Hands-On 14 / 14


